
Distributed Parallel Data Storage Systems:
A Scalable Approach to High Speed Image Servers

Brian Tierney (bltierney@lbl.gov),
William E. Johnston1(wejohnston@lbl.gov),

Hanan Herzog, Gary Hoo, Guojun Jin, Jason Lee,
 Ling Tony Chen*, Doron Rotem*

Imaging and Distributed Computing Group and  *Data Management Research Group
Lawrence Berkeley Laboratory2

Berkeley, CA 94720

Abstract

We have designed, built, and analyzed a dis-
tributed parallel storage system that will supply
image streams fast enough to permit multi-user,
“real-time”, video-like applications in a wide-
area ATM network-based Internet environment.
We have based the implementation on user-level
code in order to secure portability; we have char-
acterized the performance bottlenecks arising
from operating system and hardware issues, and
based on this have optimized our design to make
the best use of the available performance.
Although at this time we have only operated with
a few classes of data, the approach appears to be
capable of providing a scalable, high-perfor-
mance, and economical mechanism to provide a
data storage system for several classes of data
(including mixed multimedia streams), and for
applications (clients) that operate in a high-speed
network environment.

1.0  Introduction

In recent years, many technological advances
have made possible distributed multimedia serv-
ers that will allow bringing “on-line” large
amounts of information, including images, audio
and video, and hypermedia databases. Increas-

1. Correspondence should be directed to W. Johnston,
Lawrence Berkeley Laboratory, MS: 50B - 2239, Berkeley,
CA, 94720. Tel: 510-486-5014, fax: 510-486-6363; or
Brian Tierney, Tel: 510-486-7381.

ingly, there also are applications that demand
high-bandwidth access to this data, either in sin-
gle user streams (e.g., large image browsing,
uncompressible scientific and medical video, and
multiple coordinated multimedia streams) or,
more commonly, in aggregate for multiple users.
Our work focuses on two examples of high-band-
width, single-user applications. First, the terrain
visualization application described below
requires 300-400 Mbits/s of data to provide a
realistic dynamic visualization. Second, there are
applications in the scientific and medical imaging
fields where uncompressed video (e.g. from typi-
cal laboratory monochrome video cameras that
produce 115 Mbits/s data streams) needs to be
stored and played back at real-time rates. In these
example applications compression is not practi-
cal: in the case of terrain visualization, the com-

2. This work is jointly supported by ARPA - CSTO, and by
the U. S. Dept. of Energy, Energy Research Division,
Office of Scientific Computing, under contract DE-AC03-
76SF00098 with the University of California. This docu-
ment is LBL report LBL-35408. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement or recommen-
dation by the United States Government or the University
of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or the University of California, and
shall not be used for advertising or product endorsement
purposes. The following terms are acknowledged as trade-
marks: UNIX (Novell, Inc.), Sun and SPARCStation (Sun
Microsystems, Inc.), DEC and Alpha (Digital Equipment
Corp.), SGI and Indigo (Silicon Graphics, Inc.).



putational cost of decompression is prohibitive;
in the case of medical and scientific images, data
loss, coupled with the possible introduction of
artifacts during decompression, frequently pre-
cludes the use of current compression techniques.
(See, for example, [7].)

Although one of the future uses of the system
described here is for multimedia digital libraries
containing multiple audio and compressed video
streams, the primary design goal for this system
is to be able to deliver high data rates: initially for
uncompressed images, later for other types of
data. Based on the performance that we have
observed, we believe, but have not yet verified,
that the approach described below will also be
useful for the video server problem of delivering
many compressed streams to many users simulta-
neously.

Background

Current disk technology delivers about 4
Mbytes/s (32   Mbits/s), a rate that has improved
at about 7% each year since 1980 [8], and there is
reason to believe that it will be some time before
a single disk is capable of delivering streams at
the rates needed for the applications mentioned.
While RAID [8] and other parallel disk array
technologies can deliver higher throughput, they

are still relatively expensive, and do not scale
well economically, especially in an environment
of multiple network distributed users, where we
assume that the sources of data, as well as the
multiple users, will be widely distributed. Asyn-
chronous Transfer Mode (ATM) networking tech-
nology, due to the architecture of the SONET
infrastructure that will underlie large scale ATM
networks of the future, will provide the band-
width that will enable the approach of using ATM
network-based distributed, parallel data servers to
provide high-speed, scalable storage systems.

The approach described here differs in many
ways from RAID, and should not be confused
with it. RAID is a particular data strategy used to
secure reliable data storage and parallel disk
operation. Our approach, while using parallel
disks and servers, deliberately imposes no partic-
ular layout strategy, and is implemented entirely
in software (though the data redundancy idea of
RAID might be usefully applied across servers to
provide reliability in the face of network prob-
lems).

Overview

The Image Server System (ISS) is an imple-
mentation of a distributed parallel data storage
architecture. It is essentially a “block” server that

ISS disk server

ATM
network
interface

workstation

image segments

ISS disk server

ATM

workstation

image segments

ISS disk server

workstation

image segments

ATM switch (network)

single high bandwidth sink (or source)

ATM network (interleaved cell streams
representing multiple virtual circuits)

ATM
network
interface

Figure 1: Parallel Data and Server Architecture Approach to the Image Server System



is distributed across a wide area network to sup-
ply data to applications located anywhere in the
network. See Figure1: Parallel Data and Server
Architecture Approach to the Image Server Sys-
tem. There is no inherent organization to the
blocks, and in particular, they would never be
organized sequentially on a server. The data orga-
nization is determined by the application as a
function of data type and access patterns, and is
implemented during the data load process. The
usual goal of the data organization is that data is
declustered (dispersed in such a way that as many
system elements as possible can operate simulta-
neously to satisfy a given request) across both
disks and servers. This strategy allows a large
collection of disks to seek in parallel, and all
servers to send the resulting data to the applica-
tion in parallel, enabling the ISS to perform as a
high-speed image server.

The functional design strategy is to provide a
high-speed “block” server, where a block is a unit
of data request and storage. The ISS essentially
provides only one function - it responds to
requests for blocks. However, for greater effi-
ciency and increased usability, we have attempted
to identify a limited set of functions that extend
the core ISS functionality while allowing support
for a range of applications. First, the blocks are

“named.” In other words, the view from an appli-
cation is that of alogical block server. Second,
block requests are in the form of lists that are
taken by the ISS to be in priority order. Therefore
the ISS attempts (but does not guarantee) to
return the higher priority blocks first. Third, the
application interface provides the ability to ascer-
tain certain configuration parameters (e.g., disk
server names, performance, disk configuration,
etc.) in order to permit parameterization of block
placement-strategy algorithms (for example, see
[1]). Fourth, the ISS is instrumented to permit
monitoring of almost every aspect of its function-
ing during operation. This monitoring functional-
ity is designed to facilitate performance tuning
and network performance research; however, a
data layout algorithm might use this facility to
determine performance parameters.

At the present state of development and expe-
rience, the ISS that we describe here is used pri-
marily as a large, fast “cache”. Reliability with
respect to data corruption is provided only by the
usual OS and disk mechanisms, and data delivery
reliability of the overall system is a function of
user-level strategies of data replication. The data
of interest (tens to hundreds of GBytes) is typi-
cally loaded onto the ISS from archival tertiary
storage, or written into the system from live video

Figure 2: ISS Parallel Data Access Strategy as Illustrated by the TerraVision Application

Servers and disks operate in parallel to supply
tiles to the application.

Tiles intersected by the path of travel:
74, 64, 63, 53, 52, 42, 32, 33

17
27

11 12 13 14 15 16
21 22 23 24 25 26

31 32 33 34 35 36 37
41

51
61

71

42
52

62
72

43 44 45 46 47
53 54 55 56 57

63 64 65 66 67
73 74 75 76 77

74
64
63
53
52
42
32

S1D1
S1D2
S2D1
S1D1
S2D2
S1D2
S2D1

ISS server 2
ISS server 1

D1 D2
64

53 42
5263

32

74 D1 D2

tile server and disk

Data placement algorithm results in mapping tiles along
path to several disks and servers.

Tiled ortho
images of
landscape.

Path of
travel.

TerraVision

ATM
ATM

network



sources. In the latter case, the data is also
archived to bulk storage in real-time.

Client Use

The client-side (application) use of the ISS is
provided through a library that handles initializa-
tion (for example, an “open” of a data set requires
discovering all of the disk servers with which the
application will have to communicate), and the
basic block request / receive interface. It is the
responsibility of the client (or its agent) to main-
tain information about any higher-level organiza-
tion of the data blocks, to maintain sufficient
local buffering so that “smooth playout” require-
ments may be met locally, and to run predictor
algorithms that will pre-request blocks so that
application response time requirements can be
met. None of this has to be explicitly visible to
the user-level application, but some agent in the
client environment must deal with these issues,
because the ISS always operates on a best-effort
basis: if it did not deliver a requested block in the
expected time or order, it was because it was not
possible to do so.

Implementation

In our prototype implementations, the typical
ISS consists of several (four - five) UNIX work-
stations (e.g. Sun SPARCStation, DEC Alpha,
SGI Indigo, etc.), each with several (four - six)
fast-SCSI disks on multiple (two - three) SCSI
host adaptors. Each workstation is also equipped
with an ATM network interface. An ISS configu-
ration such as this can deliver an aggregated data
stream to an application at about 400 Mbits/s (50
Mbytes/s) using these relatively low-cost, “off the
shelf” components by exploiting the parallelism
provided by approximately five servers, twenty
disks, ten SCSI host adaptors, and five network
interfaces.

Prototypes of the ISS have been built and
operated in the MAGIC3 network testbed. In this
paper we describe mainly architecture and
approach, as well as optimization strategies. A
previous paper [11] describes the major imple-
mentation issues, and a paper to be published [12]
will describe other ISS applications and ISS per-
formance issues.

2.0  Related Work

There are other research groups working on
solving problems related to distributed storage
and fast multimedia data retrieval. For example,
Ghandeharizadeh, Ramos, et al., at USC are
working on declustering methods for multimedia
data [2], and Rowe, et al., at UCB are working on
a continuous media player based on the MPEG
standard [10].

In some respects, the ISS resembles the Zebra
network file system, developed by John H. Hart-
man and John K. Ousterhout at the University of
California, Berkeley [3]. Both the ISS and Zebra
can separate their data access and management
activities across several hosts on a network. Both
try to maintain the availability of the system as a
whole by building in some redundancy, allowing
for the possibility that a disk or host might be
unavailable at a critical time. The goal of both is
to increase data throughput despite the current
limits on both disk and host throughput.

However, the ISS and the Zebra network file
system differ in the fundamental nature of the
tasks they perform. Zebra is intended to provide
traditional file system functionality, ensuring the
consistency and correctness of a file system
whose contents are changing from moment to
moment. The ISS, on the other hand, tries to pro-
vide very high-speed, high-throughput access to a
relatively static set of data. It is optimized to
retrieve data, requiring only minimum overhead
to verify data correctness and no overhead to
compensate for corrupted data.

3.0  Applications

There are several target applications for the
initial implementation of the ISS. These applica-
tions fall into two categories: image servers and
multimedia / video file servers.

3. MAGIC (Multidimensional Applications and Gigabit
Internetwork Consortium) is a gigabit network testbed that
was established in June 1992 by the U. S. Government’s
Advanced Research Projects Agency (ARPA)[9].
MAGIC’s charter is to develop a high-speed, wide-area net-
working testbed that will demonstrate interactive exchange
of data at gigabit-per-second rates among multiple distrib-
uted servers and clients using a terrain visualization appli-
cation. More information about MAGIC may be found on
the WWW home page at: http://www.magic.net/



3.1  Image Server

The initial use of the ISS is to provide data to a
terrain visualization application in the MAGIC
testbed. This application, known as TerraVision
[5], allows a user to navigate through and over a
high resolution landscape represented by digital
aerial images and elevation models. TerraVision
is of interest to the U.S. Army because of its abil-
ity to let a commander “see” a battlefield environ-
ment. TerraVision is very different from a typical
“flight simulator”-like program in that it uses
high resolution aerial imagery for the visualiza-
tion instead of simulated terrain. TerraVision
requires large amounts of data, transferred at both
bursty and steady rates. The ISS is used to supply
image data at hundreds of Mbits/s rates to Ter-
raVision. No data compression is used with this
application because the bandwidth requirements
are such that real-time decompression is not pos-
sible without using special purpose hardware.

In the case of a large-image browsing applica-
tion like TerraVision, the strategy for using the
ISS is straightforward: the image is tiled (broken
into smaller, equal-sized pieces), and the tiles are
scattered across the disks and servers of the ISS.
The order of tiles delivered to the application is
determined by the application predicting a “path”
through the image (landscape), and requesting the
tiles needed to supply a view along the path. The
actual delivery order is a function of how quickly
a given server can read the tiles from disk and
send them over the network. Tiles will be deliv-
ered in roughly the requested order, but small
variations from the requested order will occur.
These variations must be accommodated by buff-
ering, or other strategies, in the client application.

Figure2: ISS Parallel Data Access Strategy as
Illustrated by the TerraVision Application shows
how image tiles needed by the TerraVision appli-
cation are declustered across several disks and
servers. More detail on this declustering is pro-
vided below.

Each ISS server is independently connected to
the network, and each supplies an independent
data stream into and through the network. These
streams are formed into a single network flow by
using ATM switches to combine the streams from
multiple medium-speed links onto a single high-
speed link. This high-speed link is ultimately

connected to a high-speed interface on the visual-
ization platform (client). On the client, data is
gathered from buffers and processed into the
form needed to produce the user view of the land-
scape.

This approach could supply data to any sort of
large-image browsing application, including
applications for displaying large aerial-photo
landscapes, satellite images, X-ray images, scan-
ning microscope images, and so forth.

Figure3: Use of the ISS for Single High-Band-
width App. shows how the network is used to
aggregate several medium-speed streams into one
high-speed stream for the image browsing appli-
cation. For the MAGIC TerraVision application,

the application host (an SGI Onyx) is using mul-
tiple OC-3 (155 Mbit/s) interfaces to achieve the
bandwidth requirements necessary. These multi-
ple interfaces will be replaced by a single OC-12
(622 Mbit/s) interface when it becomes available.

In the MAGIC testbed, the ISS has been run in
several ATM WAN configurations to drive sev-
eral different applications, including TerraVision.
The configurations include placing ISS servers in
Sioux Falls, South Dakota (EROS Data Center),
Kansas City, Kansas (Sprint), and Lawrence,
Kansas (University of Kansas), and running the
TerraVision client at Fort Leavenworth, Kansas
(U. S. Army’s Battle Command Battle Lab). The
ISS disk server and the TerraVision application
are separated by several hundred kilometers, the
longest link being about 700 kilometers.

3.2  Video Server

Examples of video server applications include
video players, video editors, and multimedia doc-
ument browsers. A video server might contain
several types of stream-like data, including con-

Figure 3: Use of the ISS for Single High-
Bandwidth App.

MAGIC
application

ISS

ISS

ISS

ISS

ATM

ATM

ATM
switch

Large Image Browsing Scenario (MAGIC TerraVision application)



ventional video, compressed video, variable time
base video, multimedia hypertext, interactive
video, and others. Several users would typically
be accessing the same video data at the same
time, but would be viewing different streams, and
different frames in the same stream. In this case
the ISS and the network are effectively being
used to “reorder” segments (see Figure4: Use of
the ISS to Supply many Low-Bandwidth Streams).
This reordering affects many factors in an image

server system, including the layout of the data on
disks. Commercial concerns such as Time Warner
and U.S. West are building large-scale commer-
cial video servers such as the Time Warner / Sili-
con Graphics video server [4]. Because of the
relatively low cost and ease of scalability of our
approach, it may address a wider scale, as well as
a greater diversity, of data organization strategies
so as to serve the diverse needs of schools,
research institutions, and hospitals for video-
image servers in support of various educational
and research-oriented digital libraries.

4.0  Design

4.1  Goals

The following are some of our goals in design-
ing the ISS:

•  The ISS should be capable of being geo-
graphically distributed. In a future environ-
ment of large scale, high-speed, mesh-
connected national networks, network dis-
tributed storage should be capable of pro-
viding an uninterruptable stream of data, in
much the same way that a power grid is
resilient in the face of source failures, and
tolerant of peak demands, because of the
possibility of multiple sources multiply
interconnected.

Receiver

Receiver

Receiver

Receiver

ATM

ATM

ATM

ATM

ISS

ISS

ISS

ISS

Video File Server Scenario

Figure 4: Use of the ISS to Supply many
Low-Bandwidth Streams

•  The ISS approach should be scalable in all
dimensions, including data set size, number
of users, number of server sites, and aggre-
gate data delivery speed.

•  The ISS should deliver coherent image
streams to an application, given that the
individual images that make up the stream
are scattered (by design) all over the net-
work. In this case, “coherent” means “in
the order needed by the application”. No
one disk server will ever be capable of
delivering the entire stream. The network is
theserver.

•  The ISS should be affordable. While some-
thing like a HIPPI-based RAID device
might be able to provide functionality simi-
lar to the ISS, this sort of device is very
expensive, is not scalable, and is a single
point of failure.

4.2  Approach

A Distributed, Parallel Server

The ISS design is based on the use of multiple
low-cost, medium-speed disk servers which use
the network to aggregate server output. To
achieve high performance we exploit all possible
levels of parallelism, including that available at
the level of the disks, controllers, processors /
memory banks, servers, and the network. Proper
data placement strategy is also key to exploiting
system parallelism.

At the server level, the approach is that of a
collection of disk managers that move requested
data from disk to memory cache. Depending on
the nature of the data and its organization, the
disk managers may have a strategy for moving
other closely located and related data from disk to
memory. However, in general, we have tried to
keep the implementation of data prediction
(determining what data will be needed in the near
future) separate from the basic data-moving func-
tion of the server. Prediction might be done by the
application (as it is in TerraVision), or it might be
done be a third party that understands the data
usage patterns. In any event, the server sees only
lists of requested blocks.



As explained in [12], the dominant bottlenecks
for this type of application in a typical UNIX
workstation are first memory copy speed, and
second, network access speed. For these reasons,
an important design criterion is to use as few
memory copies as possible, and to keep the net-
work interface operating at full bandwidth all the
time. Our implementation uses only three copies
to get data from disk to network, so maximum
server throughput is about (memory_copy_speed
/ 3).

Another important aspect of the design is that
all components are instrumented for timing and
data flow monitoring in order to characterize ISS
and network performance. To do this, all commu-
nications between ISS components are times-
tamped. In the MAGIC testbed, we are using GPS
(Global Positioning System) receivers and NTP
(Network Time Protocol) [6] to synchronize the
clocks of all ISS servers and of the client applica-
tion in order to accurately measure network
throughput and latency.

Data Placement Issues

A limiting factor in handling large data sets is
the long delay in managing and accessing subsets
of these data sets. Slow I/O rates, rather than pro-
cessor speed, are chiefly the cause of this delay.
One way to address this problem is to use data
reorganization techniques based on the applica-
tion’s view of the structure of the data, analysis of
data access patterns, and storage device charac-
teristics. By matching the data set organization
with the intended use of the data, substantial
improvements can be achieved for common pat-
terns of data access[1]. This technique has been
applied to large climate-modeling data sets, and
we are applying it to TerraVision data stored in
the ISS. For image tile data, the placement algo-
rithm declusters tiles so that all disks are evenly
accessed by tile requests, but then clusters tiles
that are on the same disk based on the tiles’ rela-
tive nearness to one another in the image. This
strategy is a function of both the data structure
(tiled images) and the geometry of the access
(e.g., paths through the landscape).

The declustering method used for tiles of large
images is a lattice-based (i.e., vector-based)
declustering scheme, the goal of which is to
ensure tiles assigned to the same server are as far

apart as possible on the image plane. This mini-
mizes the chance that the same server will be
accessed many times by a single tile request list.

Tiles are distributed among K disks by first
determining a pair of integer component vectors
which span a parallelogram of area K. Tiles
assigned to the same disk are separated by integer
multiples of these vectors. Mathematical analysis
shows that for common visualization queries this
declustering method performs within seven per-
cent of optimal for a wide range of practical mul-
tiple disk configurations.

Within a disk, however, it is necessary to clus-
ter the tiles such that tiles near each other in 2-D
space are close to each other on disk, thus mini-
mizing disk seek time. The clustering method
used here is based on the Hilbert Curve because it
has been shown to be the best curve that pre-
serves the 2-D locality of points in a 1-D tra-
versal.

Path Prediction

Path prediction is important to ensure that the
ISS is utilized as efficiently as possible. By using
a strategy that always requests more tiles than the
ISS can actually deliver before the next tile
request, we can ensure that no component of the
ISS is ever idle. For example, if most of a request
list’s tiles were on one server, the other servers
could still be reading and sending or caching tiles
that may be needed in the future, instead of idly
waiting. The goal of path prediction is to provide
a rational basis for pre-requesting tiles. See [1]
for more details on data placement methods.



As. a simple example of path prediction, con-

sider an interactive video database with a finite
number of distinct paths (video clips), and there-
fore a finite number of possible branch points. (A
“branch point” occurs where a user might select
one of several possible play clips, see Figure5:
Image Stream Management / Prediction Strategy)
As a branch point is approached by the player, the
predictor (without knowledge of which branch
will be taken) will start requesting images
(frames) along both branches. These images are
cached first at the disk servers, then at the receiv-
ing application. As soon as a branch is chosen,
the predictor ceases to send requests for images
from the other branches. Any “images” (i.e.,
frames or compressed segments) cached on the
ISS, but unsent, are flushed as better predictions
fill the cache. This is an example where a rela-
tively independent third party might do the pre-
diction.

The client will keep asking for an image until
it shows up, or until it is no longer needed (e.g.,
in TerraVision, the application may have
“passed” the region of landscape that involves the
image that was requested, but never received.)
Applications will have different strategies to deal
with images that do not arrive in time. For exam-

ISS request list (based
on all play thread
possibilities in the
immediate future)

Figure 5: Image Stream Management /
Prediction Strategy

5 4 3 2 1

12 11

8a

12

8 7 6

13

11 10 9a

9

14

15 14 13

13 12 11 10

Multimedia program that consists of multiple threads (M+A+B+C),
whose play order is not known in advance.

predictor

user interaction

fold in re-
requested tiles

C

M

A

B

structure of the
image database

current location

1213

1516 program that will be played

current play position

{ 7, 8, 9, 8a, 9a, 10, 10a, 11 }

9a 8a X 8 711 X X
recv buffer (X=missing)

{ 9, 10, 10a }
re-request list

client (multimedia player)

database structure

ple, TerraVision keeps a local, low-resolution,
data set to fill in for missing tiles.

Prediction is transparent to the ISS, and is
manifested only in the order and priority of
images in the request list. The prediction algo-
rithm is a function of the client application, and
typically runs on the client.

The Significance of ATM Networks

The design of the ISS depends in part on the
ability of ATM switches and networks to aggre-
gate multiple data streams from the disk servers
into a single high-bandwidth stream to the appli-
cation. This is feasible because most wide area
ATM network aggregate bandwidth upward - that
is, the link speeds tend to increase from LANs to
WANs, and even within WANs the “backbone” is
the highest bandwidth. (This is actually a charac-
teristic of the architecture of the SONET net-
works that underlie ATM networks.) Aggregation
of stream bandwidth occurs at switch output
ports. For example, three incoming streams of 50
Mbits/s that are all destined for the same client
will aggregate to a 150 Mbit/s stream at the
switch output port. The client has data stream
connections open to each of the ISS disk servers,
and the incoming data from all of these streams
typically put data into the same buffer.

5.0  Implementation

In a typical example of ISS operation the
application sends requests for data (images,
video, sound, etc.) to the name server process
which does a lookup to determine the location
(server/disk/offset) of the requested data.
Requests are sorted on a per-server basis, and the
resulting lists are sent to the individual servers.
Each server then checks to see if the data is
already in its cache, and if not, fetches the data
from disk and transfers it to the cache. Once the
data is in the cache, it is sent to the requesting
application. Figure6: ISS Architecture shows
how the components of the ISS are used to handle
requests for data blocks.

The disk server handles three image request
priority levels:

•  high: send first, with an implicit priority
given by order within the list.

•  medium: send if there is time.



•  low: fetch into the cache if there is time, but
don't send.

The priority of a particular request is set by the
requesting application. The application’s predic-
tion algorithm can use these priority levels to
keep the ISS fully utilized at all times without
requesting more data than the application can
process. For example, the application could send
low priority requests to pull data into the ISS
cache, knowing that the ISS would not send the
data on to the application until the application
was ready. Another example is an application that
plays back a movie with a sound track, where
audio might be high priority requests, and video
medium priority requests.

5.1  Performance Limits

Using a Sun SPARCStation 10-41 with two
Fast-SCSI host adaptors and four disks, and read-
ing into memory random 48 Kbyte tiles from all
disks simultaneously, we have measured a single
server disk-to-memory throughput of 9 Mbytes/s.
When we add a process which sends UDP pack-
ets to the ATM interface, this reduces the disk-to-
memory throughput to 8 Mbytes/s (64 Mbits/s).
The network throughput under these conditions is
7.5 Mbytes/s (60 Mbits/s). This number is an
upper limit on performance for this platform; it
does not include the ISS overhead of buffer man-
agement, semaphore locks, and context switch-
ing. The SCSI host adaptor and Sbus are not yet
saturated, but adding more disks will not help the
overall throughput without faster access memory
and to the network (e.g., multiple interfaces and
multiple independent data paths as are used in

 name
server

send
tiles

cache

read
tile list

ISS disk server

disk
reader

disk
reader

disk
reader

disk
reader

network

cache manager

other ISS
servers

 tile (image)

Figure 6: ISS Architecture

systems like a SPARCServer 1000 or SGI Chal-
lenge).

6.0  Current Status

All ISS software is currently tested and run-
ning on Sun workstations (SPARCstations and
SPARCserver 1000’s) running SunOS 4.1.3 and
Solaris 2.3, DEC Alpha’s running OSF/1, and
SGI’s running IRIX 5.x. Demonstrations of the
ISS with the MAGIC Terrain Visualization appli-
cation TerraVision have been done using several
WAN configurations in the MAGIC testbed [9].
Using enough disks (4-8, depending on the disk
and system type), the ISS software has no diffi-
culty saturating current ATM interface cards. We
have worked with 100 Mbit and 140Mbit TAXI
S-Bus and VME cards from Fore systems, and
OC-3 (155 Mbit/s) cards from DEC, and in all
cases ISS throughput is only slightly less than
ttcp4 speeds.

Table 1 below shows various systemttcp
speeds and ISS speeds. The first column is the

maximum ttcp speeds using TCP over a ATM
LAN with a large TCP window size. In this case,
ttcp just copies data from memory to the network.
For the values in the second column, we ran a
program that continuously reads from all ISS
disks simultaneously withttcp operation. This
gives us a much more realistic value for what net-
work speeds the system is capable or while the
ISS is running. The last column is the actual
throughput values measured from the ISS. These
speeds indicate that the ISS software adds a rela-

4. ttcp is a utility that times the transmission and reception
of data between two systems using the UDP or TCP proto-
cols.

TABLE 1.

System
Max ATM
LAN ttcp

ttcp w/ disk
read

Max ISS
speed

Sun SS10-51 70 Mbits/sec 60 Mbits/sec 55 Mbits/sec

Sun SS1000
(2 processors)

75 Mbits/sec 65 Mbits/sec 60 Mbits/sec

SGI Challenge L
(2 processors)

82 Mbits/sec 72 Mbits/sec 65 Mbits/sec

Dec Alpha 127 Mbits/
sec

95 Mbits/sec 88 Mbits/sec



tively small overhead in terms of maximum
throughput.

6.1  Actual Performance

The current throughput of a single ISS server
on a Sun SPARC 10/41 platform is 7.1 Mbytes/s
(55 Mbits/s), or 91% of the possible maximum of
7.5 Mbytes/s (60 Mbits/s) derived above. This
seems a reasonable result considering the over-
head required. We have achieved this speed using
a TerraVision-like application simulator which
we developed that sends a list of requests for data
at a rate of five request lists per second. Five
request lists per second does not force the appli-
cation to predict and buffer too far into the future,
but is not so fast that disk read latency is an issue.
This application simulator sends request lists that
are long enough to ensure that no disk ever is
idle. When the ISS receives a request list, all pre-
vious requests are discarded. Under these condi-
tions, about one-half of the requests in each
request list will never be satisfied (either they will
be read into the cache but not written to the net-
work, or they will not be read at all before the
next request list arrives).

As an example, a typical TerraVision request
list contains fifty tiles. Of these fifty tiles, forty
are read into ISS cache, twenty-five are written to
the network, and ten are not processed at all. This
behavior is reasonable because, as discussed in
the section on data path prediction above, the
application will keep asking for data until it
shows up or is no longer needed. The requesting
application will anticipate this behavior, and pre-
dict the tiles it needs far enough ahead that
“important” tiles are always received by the time
they are needed. Tiles are kept in the cache on an
LRU basis, and previously requested but unsent
tiles will be found in the cache by a subsequent
request. The overhead of re-requesting tiles is
minimal compared with moving them from disk
and sending them over the network.

During ISS operation, the average CPU usage
on the disk server platform is 10% user, 60% sys-
tem, 30% idle, so the CPU is not a bottleneck.
With the TerraVision application and 40 Mbyte of
disk cache memory on the ISS server, on average
2% of tiles are already in cache relative to any
given request. Increasing the cache size will not

increase the throughput, but may improve latency
with effective path prediction by the application.

7.0  Future Work

We plan to expand the capabilities of the ISS
considerably during the next year or so. These
enhancements (and associated investigation of
the issues) will include:

•  Implementing a multiple data set data lay-
out strategy;

•  Implementing a multi-user data layout and
access strategy;

•  Implementing a capability to write data to
the ISS;

•  Implementing the ability to monitor the
state of all ISS servers and dynamically
assign bandwidth of individual servers to
avoid overloading the capacity of a given
segment of the network (i.e., switches or
application host);

•  Implementing mechanisms for handling
video-like data, including video data place-
ment algorithms and the ability to handle
variable size frames (JPEG/MPEG);

•  Modifying name server design to accom-
modate data on server performance and
availability and to provide a mechanism to
request tiles from the “best” server (fastest
or least loaded);

•  Investigating the issues involved in dealing
with data other than image- or video- like
data.

Many of these enhancements will involve
extensions to the data placement algorithm and
the cache management methods. Also we plan to
explore some optimization techniques, including
using larger disk reads, and conversion of all
buffer and device management processes to
threads-based light weight processes.

8.0  References
[1] Chen L. T. and Rotem D., “Declustering

Objects for Visualization”, Proc. of the
19th VLDB (Very Large Database) Con-
ference, 1993.



[2] Ghandeharizadeh, S. and Ramos, L, “Con-
tinuous Retrieval of Multimedia Data
Using Parallelism, IEEE Transactions
on Knowledge and Data Engineering,
Vol 5, No 4, August 1993.

[3] Hartman, J. H. and Ousterhout, J. K.,
“Zebra: A Striped Network File Sys-
tem”, Proceedings of the USENIX
Workshop on File Systems, May 1992.

[4] Langberg, M., “Silicon Graphics Lands
Cable Deal with Time Warner Inc.”, San
Jose Mercury News, June 8, 1993.

[5] Leclerc, Y.G. and Lau, S.Q., Jr.,“TerraVi-
sion: A Terrain Visualization System”,
SRI International, Technical Note #540,
Menlo Park, CA, 1994.

[6] Mills, D., “Simple Network Time Protocol
(SNTP)”, RFC 1361, University of Del-
aware, August 1992.

[7] Parvin, B., Peng, C., Johnston, W., and
Maestre, M.,“Tracking of Tubular
Objects for Scientific Applications”,
IEEE Conf. on Computer Vision and
Pattern Recognition, June 1994, pp.
295-301

[8] Patterson, D., Gibson, R., and Katz, R.,
“The Case for RAID: Redundant Arrays
of Inexpensive Disks”, Proceedings
ACM SIGMOD Conference, Chicago,
IL, May, 1988 (pp. 106-113)

[9] Richer, I and Fuller, B.B, “An Overview of
the MAGIC Project,” M93B0000173,
The MITRE Corp., Bedford, MA, 1
Dec. 1993.

[10] Rowe L. and Smith B.C, “A Continuous
Media Player”, Proc. 3rd International
Workshop on Network and Operating
System Support for Digital Audio and
Video, San Diego, CA, Nov. 1992.

[11] Tierney, B., Johnston, W., Herzog, H.,
Hoo, G., Jin, G., Lee, J., “System Issues
in Implementing High Speed Distributed
Parallel Storage Systems”, Proceedings
of the USENIX Symposium on High
Speed Networking, Aug. 1994, LBL-
35775.

[12] Tierney, B., Johnston, W., Chen, L.T., Her-
zog, H., Hoo, G., Jin, G., Lee, J., “Using
High Speed Networks to Enable Distrib-

uted Parallel Image Server Systems”,
Proceedings of Supercomputing ‘94,
Nov. 1994, LBL-35437.


